This presentation does not contain any proprietary, confidential, or otherwise restricted information

Strategies for Cost-Effective Lightweighting of Vehicle Structures

<u>Future Composites Symposium</u> November 13 - 14, 2024

Marcelo Dapino Honda R&D Americas Designated Professor

Department of Mechanical and Aerospace Engineering NSF IUCRC Smart Vehicle Concepts The Ohio State University

Co-Sponsors:

POSITE MATERIALS

Outline

- > Carbon fiber metal joining for vehicle structures
- > Flexible and advanced manufacturing capabilities at OSU

Carbon fiber – Metal joining

https://www.twi-global.com/technicalknowledge/faqs/what-is-spot-welding

Material	Specific strength [kN·m/kg]		
AA 6xxx, 7xxx	48, 220		
Mild steel, Usibor	37, 190		
CFRP, CF	556, 2580		

CFRP-Al transition

Ultrasonic Additive Manufacturing - UAM

Weld Formation

Commercial Uses of UAM

7

CARBON FIBER INTEGRATION USING UAM

CENTER FOR ULTRASONIC ADDITIVE MANUFACTURING THE OHIO STATE UNIVERSITY

PI: MARCELO DAPINO dapino.1@osu.edu

Tailorable Failure Models

The joint relies on mechanical interlocking, which provides direct load transfer between the CF and AA matrix. Joint strength is dictated by the ratio of CF to AA.

Strength Comparison

Joining method	Strength	Features
Adhesive	12.42 MPa ^[1]	Long curing time, weak peel strength
Induction spot welding	14.5 MPa ^[2]	High temperature
Ultrasonic welding	34.8 MPa ^[3]	Spot welding
Friction spot joining	112 MPa ^[4]	Spot welding
Mechanical fastener	5 kN ^[5]	Extra material, damage to the CFRP
UAM	129.5 MPa	Continuous, solid state

Strenght and Energy Absorption Benchmarking

Structural tests benchmarking against pop rivets

Four-point bend Similar peak load 69% higher SEA

Axial crush 63% shorter crush distance 32% higher energy absorption

Torsion 17% larger twist angle 13% higher SEA

Four-Point Bend Testing

CFRP Part

CFRP hat - Al plate pairs

- Baseline hat joined to Al plate via Self-Pierced **Rivets (SPR)**
- UAM Flange Transitions/RSW
- 3 dry biaxial fabrics integrated into flange -
- Fabrics spliced at different places within hat -
- Same number of joints in each hat -

RSW Spot Location Studies

• The diameter of the heat affected zone (HAZ) for an RSW between a 6061-T6 sheet and a UAM build of 6061-H18 is measured as **12.5 mm** from the microhardness map

Corrosion Studies

- Kevlar fibers are embedded in the AA matrix to create insulation between CFRP and AA
- The channels to embed Kevlar is deeper than those for CF to house the thicker Kevlar tow
- To verify the effectiveness of the insulation method, samples were prepared for CCT tests by embedding two layers of Kevlar in twelve layers of AA and laid up with three configurations
- > Five buffer samples were E-coated before CCT

Mass Loss After 120 Cycles

- > Samples were cleaned chemically after the 120-day CCT
- > CF-outside and CF-inside samples have small mass loss
- > Buffer samples exhibit negligible mass loss and achieve zero mass loss with E-coat

Strength Effect After 120 Cycles

- > CF-outside and CF-inside samples exhibit substantial strength loss
- > Buffer samples maintained more than 97% strength with and without E-coat

* HES spec: industry target for equivalent metal-metal joint tensile peak load

** CCT spec: 90% of 0-cycle samples

(b)

CENTER FOR COMPOSITE MATERIALS

Collaboration

Department of Energy Vehicle Technologies Office Award # DE-EE0009656

- Achieve 160 lb (73 kg) glider weight reduction
- No compromise on performance targets
- Cost increment limited to \$5 per pound (0.453 kg)
- Compatibility with OEM's existing factory infrastructure (joining and assembly)
- Scalable to 200,000 vehicles/year production
- Recyclability

Technical Phases

Strength, Stiffness, and Crashworthiness

Steel body-in-white (BIW) used as benchmark for structural and crashworthiness targets

Continuous Offline Manufacturing

Kevlar (aramid) has roughly the same strength as CF, higher toughness, and it eliminates corrosion.

Flexible and Advanced Manufacturing at OSU

HAMMER – Hybrid Autonomous Mfg. Moving from Evolution to Revolution (an NSF Engineering Research Center)

- 10-year cooperative agreement +
- ~\$5M/yr federal funds
- Foundational Components:
 - Convergent Research
 - Engineering Workforce
 Development
 - Culture of Diversity and Inclusion
 - Innovation Ecosystem

Diverse 5-institution team: Manufacturing, Metallurgy, Machine Learning, Controls, Education, Social and Policy.

HAMMER

Vision: Autonomous-Factory/Artisan Box (Auto-FAB)

Research Thrusts

T1: Design: product and process.

T2: Tools and Process Convergence: new tools and processes.

T3: Materials State Awareness: Enabling process and model-based quality certification.

T4: Control, Intelligence, and Autonomy: Leveraging AI to control processes learn.

Commercialization

HAMICo

Structural overview of the public-private partnership with HAMMER and HAMICo

Public entity aligned to NSF to source projects

Innovation platform manager housing the HAMMER IP and directing commercialization

Ecosystem of venture capital + corporate funding to accelerate adoption

Ma2jic NSF IUCRC – Industry Consortium

THE UNIVERSITY OF TENNESSEE. KNOXVILLE

Scope

THRUST AREAS AND PROJECTS

Thrust Area	Projects	Committee Chair / Vice Chair	Committee Co-Chair
Performance	7	Michael Eff , EWI Daniel Paolini, Honda	Boian Alexandrov (OSU)
Processes	10	Andrzej Nycz , ORNL Stephen Tate, <i>EPRI</i>	Office on the web Frame Bradley Jared (UTK)
Materials	8	Jeff Rodelas , SNL Ravi Menon <i>, ESAB</i>	Carolin Fink (OSU) Michael Benoit (UW)
Modeling (Cross Cutting)	-	Adam Hope, Thermo-Calc Andres Acuna, Lincoln Electric	Zhenzhen Yu (CSM)
ONGO	25 ING R&D		\$4.4M PER YEAR

IUCRC Benefit

What makes Ma²JIC successful?

- Cutting edge, pre-competitive fundamental research in areas of interest to our members.
- Wide base of industry members (energy fossil-nuclear-clean, automotive, aerospace, manufacturing, materials, software, Nat. Laboratories, welding supplies/equipment, etc.)
 Orfice on the web Frame
- Strong alumni base (*Ma²JIC graduates bring new member organizations*)
- Flexible with engaging members (example: in-kind donations and varying membership levels)
- Two in-person meetings each year, which bring together all our students, members and faculty for a two-day deep discussion of our research, training, center operation, and scientific/technological road-mapping.
- Opportunity for our members to train and recruit talent for their organizations.
- Strong administrative team to support center operation, finances and planning (100% selfsupported)

Luo Group – Lightweight Materials and Manufacturing

- Advanced lightweight materials: Al, Mg, Ti & high-entropy alloys, bio-metals, super-wood, and metal matrix nano-composites.
- Innovative and sustainable manufacturing processes: casting, forming, additive and multi-material manufacturing.
- Lightweight and multi-material solutions using integrated computational materials engineering (ICME) tools for structural and bio-medical applications.

ĬМ

Pourboghrat Group – Modeling of Manufacturing Processes

Multi-scale Computational Framework to Correlate Material-Process-Microstructure-Performance Relationships

AM process modeling

UNIVERSITY OF DELAWARE CENTER FOR COMPOSITE MATERIALS

AM-built polymers

NSF IUCRC Smart Vehicle Concepts Center

National Science Foundation Industry-University Cooperative Research Center (NSF IUCRC)

- <u>Research</u>

Conduct basic and applied precompetitive research on smart materials and emerging technologies applied to ground and air vehicles

- Education

Prepare next-generation engineers who possess both theoretical and experimental expertise developed through industry-relevant research

- Technology transfer

Development of technologies to enable the design and manufacturing of multimaterial, lightweight, and multifunctional systems

- www.SmartVehicleCenter.org
- Pre-competitive model
- Long-term research with industrial viewpoint

ф)

CENTER FOR COMPOSITE MATERIALS This presentation does not contain any proprietary, confidential, or otherwise restricted information

Thank You