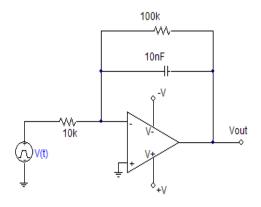


EET Outcome Assessment Sample Questions


- The unit of force in the International System of units (the SI system) is the:
 - a. Newton
 - b. Kilogram
 - c. Joule
 - d. Slug
- The work required to move a charge of 2 coulombs from one point in a circuit to another point is 10 Joules. Determine the potential difference or voltage (in volts) between the two points.
 - a. 20
 - b. 5
 - c. 0.2
 - d. 100
- Two sinusoidal voltages of the same frequency have peak values of 8V and 6V, respectively. They have a phase difference of 90°. Determine the peak value of the sum of the two voltages.
 - a. 2
 - b. 14
 - c. 10
 - d. 48
- Determine the equivalent resistance in ohms looking into the circuit shown below. Consider a wye-delta transformation to simplify the circuit.
 - a. 6.0
 - b. 3.0
 - c. 8.4
 - d. 4.2
- The gray code 11101000_G is equivalent to the binary number:
 - a. 11101001₂
 - b. 00010111₂
 - c. 10110000₂
 - d. 10011100₂

- 6. The input signal to the circuit shown below is a 0.5 volt_{peak} 10Hz square wave with no DC component. Which of the following **BEST** describes the steady-state output signal?
 - a. an inverted 5.0 voltpeak 100Hz square wave
 - b. an inverted 5.0 voltpeak 10Hz square wave
 - c. a non-inverted 10 voltpeak 10Hz square wave
 - d. a non-inverted 5.0 voltpeak 10Hz square wave

- 7. The purpose of a microprocessor assembler directive is to:
 - a. tell the assembler when to burn the program to the microprocessor
 - b. configure the microprocessor
 - c. define the microprocessor clock frequency
 - d. control the assembly process
- 8. The input signal to the integrator circuit shown below is a $0.5~V_{\rm peak}$ 10Hz square wave with no DC component. The output is a square wave rather than a triangular wave. Which of the following **BEST** describes the reason?
 - a. The capacitor is too large
 - b. the input frequency is too low
 - c. the amplitude of the source voltage is too large
 - d. the 100kohm resistor is too small

